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The steady flow of a stream emerging from a nozzle, hitting a horizontal plate and
falling under gravity is considered. Depending on the length of the plate L and the
Froude number F, the plate can either divert the stream or lead to its detachment.
First, the problem is reformulated using conformal mappings. The resulting problem
is then solved by a collocation Galerkin method; a particular form is assumed for the
solution, and certain coefficients in that representation are then found numerically
by satisfying Bernoulli’s equation on the free surfaces at certain discrete points. The
resulting equations are solved by Newton’s method, yielding various configurations of
the solution based on the values of F and L. The lift exerted on the plate is computed
and discussed. If the plate is long enough, physically meaningful solutions are found
to exist only for values of F greater than or equal to a certain critical value F0, which
is to be determined. Results are presented, both for F >F0 where the detachment is
horizontal and for F = F0 where the detachment point is a stagnation point at a 120◦

corner. Related asymmetric flows where the rising stream is inclined are also studied.

1. Introduction
Rising flows occur in numerous applications. For example, water fountains have

a long history, as thoroughly described by Clanet (1998). While Clanet’s study was
experimental, several papers have been devoted to numerical computations of flows
emerging from a nozzle and falling under gravity. The numerical computation of
free-surface flows in the presence of gravity is a notoriously difficult problem. There
is an extended literature on jets impinging on obstacles of various shapes in the
absence of gravity (see, for example, Hureau, Brunon & Legallais 1996 or Peng &
Parker 1997). This is why we restrict our literature review on free-surface flows in the
presence of gravity. Dias & Vanden-Broeck (1990) studied a steady stream splitting
into two sheet-like jets. Dias & Christodoulides (1991) studied a rising stream which
falls down as a single jet as it escapes from the nozzle. Vanden-Broeck & Keller
(1982) considered steady jets, rising and falling under gravity. Dias & Vanden-
Broeck (1993) considered bow flows with a jet in front of the ship. Vanden-Broeck
(1993) investigated jets aimed vertically upwards without the presence of any solid
boundaries. An interesting limiting case of the nozzle problem is obtained when
the nozzle is horizontal. The corresponding configuration is known as the waterfall
problem (see, for example, Goh & Tuck 1985 or Dias & Tuck 1991). A variant of this
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problem is the flow of a stream of water falling under gravity after emerging from
a simple slit orifice in a vertical wall (see Tuck 1987). Wiryanto & Tuck (2000) also
considered the flow in a channel which ends abruptly with a barrier in the form of a
vertical wall of finite height. Hence, the stream is forced to go upward and then falls
under the effect of gravity. The present study gives insight to a realistic case which,
to our knowledge, has not been studied yet: the case where a plate diverts the jet
emerging from a nozzle pointing upward. The results obtained in this paper could be
used, for example, to control jets, in particular their direction, by positioning a plate
higher or lower relative to the nozzle. Several limiting cases are discussed as well.

A stream of fluid flows up and out of the top of a long two-dimensional vertically
sided pipe of half-width W. The upwardly directed flow meets a horizontal plate of
half-length L set at a height H above the top of the pipe (if the nozzle is wider
than the plate, the plate can be put inside the nozzle as well and then H becomes
negative). The flow splits into two jets that reach a maximum height on each side of
the plate and then fall under gravity. The solution depends on H/W, L/W and on
the dimensionless Froude number

F =
U√
gW

, (1.1)

where g is the acceleration due to gravity and U the velocity of the fluid far inside
the nozzle.

The problem is formulated in § 2. Since the flows are two-dimensional, one can
use the theory of functions of a complex variable. Conformal mappings lead to
a formulation of the problem that is well suited for discretization. A system of N
nonlinear equations in N unknowns is then derived. The problem is solved numerically
through a collocation Galerkin method explained in § 3. The numerical results and
some computed profiles of the free surfaces are presented in § 4. A study of the lift
force exerted on the horizontal plate and of the pressure distribution along the plate
is performed in § 5. In § 6 we study related flows where the detachment point along
the plate is a stagnation point and in § 7 we extend our study to the case of a stream
emerging from a nozzle and splitting into two non-symmetric jets, without hitting the
horizontal plate. In fact, one may regard this special configuration as the case where
the plate is too high to be hit. Finally, we consider cases where the nozzle is inclined
at an angle β of elevation to the positive horizontal axis.

2. Formulation of the problem
We consider the steady irrotational flow of an incompressible inviscid fluid emerging

from a nozzle of width 2W directed upward, hitting a horizontal plate of length 2L
placed at a vertical distance H from the edges of the nozzle (this distance H can be
negative if the plate is narrower than the nozzle), and falling symmetrically under
gravity. As shown in figure 1(a), the stream coming from far inside the nozzle (see
point I) hits the horizontal plate, centred at point A, and forms two jets – one on each
side – detaching at points B(B ′) and S(S ′) and forming free surfaces B → J (B ′ → J ′)
and S → J (S ′ → J ′) to the right (left).

Due to symmetry, the formulation of the problem is based on the ‘right’ half of the
flow. The results presented in the sequel are simply obtained by superposition of the
‘left’ and ‘right’ flows. The coordinate system to be used is (x, y), x being horizontal
and y vertical. The point B is taken as the origin. The mass flux emerging from the
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Figure 1. (a) Sketch of the flow and of the coordinates. The free-surface profile is a computed
solution for F = 2.0 and (xS , yS) = (0, 2.6). Special points are labelled on the boundary.
(b) The complex potential f-plane. The images of the special points are shown. (c) The
complex t-plane. The images of the special points are shown.

‘right’ nozzle is

Q = UW. (2.1)

Let u and v denote the x- and y-components of the fluid velocity. The system
is governed by the assumptions of irrotationality and incompressibility, which leads
to (u, v) = ∇φ with Laplace’s equation ∇2φ = 0 holding for the velocity potential φ;
Bernoulli’s equation then follows as a first integral of the Euler (momentum) equations
of motion. It reads

1

2
(u2 + v2) + gy +

p

ρ
= constant, (2.2)

which is valid everywhere inside the fluid and where p is the pressure and ρ the fluid
density. Assuming that the pressure has the same constant value p = 0 on all free
surfaces, and taking W and U as the unit length and unit velocity respectively, Q
becomes unity and Bernoulli’s equation on the free surfaces becomes, in dimensionless
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form,

1

2
(u2 + v2) +

1

F 2
y =

1

2
v2

B, (2.3)

where the same symbols are kept for the dimensionless variables for the sake of
simplicity. The constant on the right-hand side has been evaluated at point B, where
the velocity is purely vertical and y =0.

The problem under consideration can be solved with the use of conformal mappings.
Hence, we define the complex variable z = x+iy and the complex potential f = φ+iψ ,
for the velocity potential φ(x, y) and the streamfunction ψ(x, y). Then we also
introduce the hodograph variable

ζ (z) ≡ df

dz
= u − iv. (2.4)

The flow domain in the f-plane is represented in figure 1(b). It lies within an infinite
strip of height 1. Without loss of generality the point B is taken as the origin of the
complex potential.

We then transform the domain of the fluid in the f-plane into the upper half of the
unit disk in the t-plane so that points S, J and B are mapped into points –1, i and 1
respectively, as shown in figure 1(c). The ‘left’ side of the half-nozzle goes onto [tA, tI ]
and the ‘right’ side onto [tI , 1], while the horizontal plate goes onto [−1, tA], with the
upper free surface going onto the left quarter of the half-circle and the lower free
surface onto the right quarter of the half-circle. The transformation from the f-plane
to the t-plane can be written in differential form as

df

dt
=

1

π

(
1 + t2

I

) 1 − t2

(1 + t2)(t − tI )(1 − t tI )
(2.5)

or in integrated form as

f =
1

π
ln

(
2(t − tI )(1 − t tI )

(1 − tI )2(1 + t2)

)
. (2.6)

The free surfaces in the t-plane are described by the points t =eiσ , σ ∈ [0, π].
Clearly, one can obtain t as a function of f explicitly by inverting relation (2.6).

The problem now reduces to finding the hodograph variable ζ as an analytic
function of t, satisfying Bernoulli’s equation (2.3) on the free surfaces and the
kinematic boundary condition on the real diameter t ∈ [−1, 1].

The following singularities are present.
(i) At point A, the velocity of the fluid vanishes and the appropriate behaviour for

ζ is given by

ζ ∼ (t − tA)1/2 as t → tA. (2.7)

(ii) At point J, there is a jet-type singularity and the appropriate behaviour for ζ is
given by

ζ ∼ [ln(1 + t2)]1/3 as t → i. (2.8)

(For more details on these singularities, see for example Vanden-Broeck & Keller
1986.) It is then possible to define the function Ω(t) by the relation

ζ (t) = −i
(t − tA)1/2[− ln c(1 + t2)]1/3eΩ(t)

(tI − tA)1/2
[

− ln c
(
1 + t2

I

)]1/3
eΩ(tI )

, (2.9)
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where |ζ (tI )| = 1. The function Ω(t) is analytic for |t | < 1 and continuous for |t | �1,
and can be expanded in a power series of the form

Ω(t) =

∞∑
n=1

ant
n. (2.10)

The constant c in (2.9) is chosen such that all cube-roots in (2.9) are positive for
t ∈ (−1, 1) and do not vanish for t =0. A good choice is c = 0.2. The value of ζ does
not depend on c but the values of the coefficients an do.

3. Numerical method
The coefficients an in the power series (2.10) can be determined by using a collocation

Galerkin method. We truncate the infinite series after N − 2 terms and introduce on
the free surfaces the N − 2 mesh points

σM =
π

N − 2

(
M − 1

2

)
, M = 1, . . . , N − 2. (3.1)

To compute the values of y in Bernoulli’s equation (2.3), use is made of the equation

dz

dt
=

1

ζ

df

dt
, (3.2)

which is integrated numerically. Substituting the expressions of y and ζ into equation
(2.3) at the mesh points σM , we obtain N − 2 nonlinear algebraic equations for the N
unknowns a1, . . . , aN−2, tI and tA. The last two equations are obtained by imposing
the position of point S. In other words, we impose the extent of the horizontal plate
xS and the vertical aperture yS between the plate and the nozzle.

This system of N nonlinear equations in N unknowns is solved by Newton’s method
for given values of the Froude number F using MATLAB. All the computations were
performed with N = 200, after a check on accuracy was performed. Typical orders of
magnitude for a1, a20 and a100 are |a1| ≈ 10−1, |a20| ≈ 10−2 and |a100| ≈ 10−3.

To summarize, the solutions we consider form a three-parameter family of solutions.
The three parameters are the Froude number F given by (1.1), the offset parameter
xS equal to L/W − 1 and the aperture parameter yS equal to H/W. The theoretical
ranges of these three parameters are

F ∈ (0, ∞), xs ∈ (−1, ∞), ys

{
(0, ∞) if xS > 0
(−∞, ∞) if xS < 0.

When the offset is negative (xS < 0) one obtains underhanging configurations, while
for positive offsets (xS > 0) one obtains overhanging configurations. When xS = 0, the
edge of the plate is on the same vertical line as the side of the nozzle. Of course, if
the elevation of the plate is too high, the flow may not reach the plate, so there is an
upper bound on yS . Finally, if the nozzle is wider than the plate (xS < 0), the plate
can be put inside the nozzle (with yS < 0). But again if the plate is too deep inside
the nozzle, the flow will not be able to escape and so there is also a lower bound
on yS .

4. Numerical results
Before we describe the numerical results, we briefly consider the limiting case

without gravity (F → ∞) and with infinite offset (xS → ∞). Then there is only one
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Figure 2. Same as figure 1(a) for F = 2.0 and (xS , yS) = (−0.4, 1.0). We refer to such flows
as ‘rising’ jets.

parameter left, aperture yS . This particular case was considered in the monograph
by Milne-Thomson (1996, Example XII.10 and figure 14.8b), where an analytical
solution was provided. For example, one has the following explicit relation between
yS and the ultimate width d = D/W of the jet in contact with the plate (W being the
(horizontal) width of the jet in the nozzle and D being the far-field (vertical) depth
of the stream of fluid on the underside of the horizontal plate):

yS = d +
1 + d2

π
ln

(
1 + d

1 − d

)
. (4.1)

As yS increases from 0 to ∞, d increases monotonically from 0 to 1. The solution for
the limiting case (F → ∞, xS → ∞) looks like the solution shown in figure 3, with the
plate extended to infinity and the lower free surface staying horizontal at infinity.

In order to study systematically the three-parameter family of solutions, we let the
offset of the plate and the aperture between plate and nozzle (in other words, the
coordinates xS and yS of the point S) vary for given values of the Froude number
F. One way to classify the solutions into three types of flows is as follows. Imagine
that the Froude number F is fixed and that one varies the size and the position of
the plate. If the plate is short enough and not too high, the flow will continue as two
rising jets, after hitting the plate. If the plate is long enough, the flow will follow the
plate without rising any longer. It will eventually develop into two downward jets. If
the plate is neither short nor long, the flow will look like a fountain (see figure 1a).

We now present results – covering all cases – for F = 2.0. More computations have
been performed at other Froude numbers, but it was found that the general behaviour
is the same. Results with the whole range of Froude numbers will be given in § 6.

(a) Rising jet. In this case, the stream is weakly diverted by the horizontal plate
when hitting it and then continues to rise in the form of jets before eventually falling
down under gravity. This is shown in figure 2 for (xS , yS) = (−0.4, 1.0).

(b) Overhanging jet. In this case, the stream is strongly diverted by the horizontal
plate when hitting it and then follows an almost horizontal trajectory in the form
of jets before eventually falling down under gravity. This is shown in figure 3 for
(xS, yS) = (1.3, 1.1). Using yS =1.1, one can use (4.1) to compute the ultimate width
that the jet would reach if the Froude number was infinite and the plate infinitely
long. One finds d = 0.564. This value can be compared with the width of the jet as it
leaves the plate at x = xS . One finds a thickness equal to 0.615, which is within 10 %
of the no-gravity value.
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Figure 3. Same as figure 1(a) for F = 2.0 and (xS , yS) = (1.3, 1.1). We refer to such flows as
‘overhanging’ jets.
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Figure 4. Free-surface profiles for a plate placed inside the nozzle. The parameter values are
F = 2.0 and (xS , yS) = (−0.4, −0.2).

(c) Intermediate jet. In this case, the stream rises slightly after hitting the plate, but
then quickly falls down under gravity. An example was already shown in figure 1(a)
for (xS , yS) = (0, 2.6). The flow looks like a fountain and the plate has only a small
effect on the flow.

If the nozzle is wider than the plate, the plate can be put inside the nozzle. An
example of such flow, with rising jets, is shown in figure 4.

5. Uplift force exerted on the horizontal plate
The lift FL exerted on the plate is evaluated. It is equal to the vertical component

of the pressure force exerted on the plate (since the plate is horizontal, there is in fact
no horizontal component). Using Bernoulli’s equation (2.2), one obtains the following
expression for the lift coefficient CL:

CL =
FL

1
2
ρU 2L

=
W

L

∫ x(S)

−1

p
1
2
ρU 2

dx =
1

1 + x(S)

∫ x(S)

−1

(
u2

S − u2 − v2
)
dx, (5.1)

where p is the physical pressure and uS the velocity at the edge of the plate (point
S). Since the flows depend on three independent parameters (F, xS and yS), it is not
possible to perform a full parametric study. It was decided to fix the Froude number
and let the elevation of the plate yS vary for a discrete set of values of the offset
xS , the plate half-length being 1 +xS . Results are presented in figure 5. For some
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Figure 5. Lift exerted on the plate. Plot of the lift coefficient (5.1) as a function of the
plate-elevation yS , for three different values of the offset xS , for F = 2. Left: xS = − 0.4;
middle: xS = 0; right: xS =1.3. For the case on the left (negative offset), the plate can be placed
inside the nozzle and yS can be negative. Note the different vertical scales on the middle and
right plots: the lift coefficient on the right plot increases so rapidly as yS tends to zero that
only the small values of CL are shown.

parameters, the lift coefficient was found to be negative (see the middle and right
plots). In other words, the plate is being sucked down by the flow rather than being
lifted up. This somewhat counterintuitive result can be explained as follows. Along
the plate S ′AS, Bernoulli’s equation simply reads

1
2
u2 + p = 1

2
u2

S.

At the centre of the plate (point A) the pressure is maximum since the velocity
u is 0. At the edges of the plate (points S ′ and S) the pressure is 0 (atmospheric
pressure). In the limit as point S becomes a stagnation point (see § 6), the velocity uS

becomes identically 0 and therefore the pressure must be negative everywhere along
the plate (p = −1/2u2). On the middle and right plots, the upper bound for yS indeed
corresponds to the formation of a stagnation point at the edge of the plate S. On the
left plot, the computations were stopped at a value of yS slightly above 2 because a
stagnation point began to form on the upper free surface away from the plate edge.

Various pressure profiles along the plate are given in figure 6. They correspond
to the three cases described in § 4 (rising jet, overhanging jet, intermediate jet). In
addition, we show an example with both positive and negative pressures along the
plate. The pressures have been non-dimensionalized by 1/2ρU 2.

6. Flows with a stagnation point
If one wishes to impose the condition that the edges of the horizontal plate S and S ′

are stagnation points, then – following the formulation in § 2 – there will be an extra
singularity in the complex velocity in addition to the singularities at points A and J
already defined in (2.7) and (2.8). Repeating here these singularities for convenience,

(i) ζ ∼ (t − tA)1/2 as t → tA,

(ii) ζ ∼ [ln(1 + t2)]1/3 as t → i,
one adds the following singularity:
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Figure 6. Four different pressure profiles along the plate for F = 2. The pressure is
non-dimensionalized by 1/2ρU 2. The labels are �, (xS , yS) = (1.3, 1.1); �, (xS , yS) = (−0.4, 1.0);
∗, (xS , yS) = (0, 2.6); �, (xS , yS) = (1.3, 2.9).

(iii) At point S, the velocity of the fluid vanishes and the appropriate behaviour
for ζ is given by

ζ ∼ (t + 1)2/3 as t → −1. (6.1)

It is then possible to define the function Ω(t) by the relation

ζ (t) = −i
(1 + t)2/3(t − tA)1/2

[
− ln c(1 + t2)

]1/3
eΩ(t)

(1 + tI )2/3(tI − tA)1/2
[

− ln c(1 + t2
I )

]1/3
eΩ(tI )

, (6.2)

where |ζ (tI )| = 1. We then truncate the infinite series (see (2.10)) after N – 3 terms
and introduce on the free surfaces the N − 2 mesh points

σM =
π

N − 2

(
M − 1

2

)
, M = 1, . . . , N − 2. (6.3)

Substituting the expressions of y and ζ into (2.3) at the mesh points σM, we obtain
N − 2 nonlinear algebraic equations for the N unknowns a1, . . . , aN−3, F, tI and tA.
The last two equations are obtained by imposing the position of S.

This system of N nonlinear equations in N unknowns is solved by Newton’s method
using MATLAB. All the computations presented below were performed with N = 200,
after a check on accuracy was performed.

We first study the effect of the position of the stagnation point S on the Froude
number F. For three ‘extreme’ values of xS , namely −0.95, 0 (the plate length and the
nozzle width are equal) and 1, i.e. letting the horizontal plate vary from very short to
long, the resulting relation F vs yS is demonstrated in table 1. It turns out that the
x-coordinate of the stagnation point has very little effect on the relation F vs yS . Of
interest is the fact that when xS = 1 (long plate), there is a limiting plate elevation at
about yS =0.42. If the plate is lowered below that value, the flow will not be able to
reach the end of the plate and will detach before the edge of the plate. This limiting
behaviour occurs for all positive values of xS .

Figure 7 shows the computed solution for a long horizontal plate with (xS ,
yS) = (1.0, 3.0), yielding F = 1.959. Finally, figure 8 shows the computed solution
for a very short horizontal plate with (xS , yS) = (−0.99, 1.64), yielding F = 1.04. This
can be compared with the limiting case of no horizontal plate. In fact solutions of this
kind (in the absence of horizontal plate) were computed by Dias & Christodoulides
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yS\ xS −0.95 0 1

0.1 0.019 0.018 –
0.2 0.053 0.052 –
0.3 0.096 0.094 –
0.4 0.147 0.144 –
0.42 0.159 0.155 0.205
0.5 0.204 0.200 0.265
0.6 0.267 0.261 0.338
0.8 0.402 0.394 0.488
1.0 0.547 0.538 0.636
1.2 0.699 0.688 0.781
1.4 0.852 0.841 0.923
1.6 1.005 0.994 1.063
1.8 1.155 1.145 1.201
2.0 1.302 1.293 1.337
2.2 1.445 1.437 1.470
2.4 1.583 1.577 1.600
2.5 1.650 1.645 1.664
2.7 1.781 1.776 1.788
2.8 1.844 1.840 1.849
3.0 1.966 1.963 1.959

Table 1. Values of the Froude number F as a function of xS and yS for flows with a
stagnation point.

–6 –4 –2 0 2 4
–2

–1

0

1

2

3

4

x

y

Figure 7. Free-surface profiles with stagnation point at (xS , yS) = (1.0, 3.0). The Froude
number F =1.96 comes as part of the solution.

(1991). The solution here compares well with the solution presented in figure 3 of
that paper.

Next, we study flows with low Froude numbers. We started by computing solutions
without a stagnation point at point S. We fixed xS and yS , and let the Froude number
decrease. Solutions were found to exist only for values of F greater than a certain
critical value F0. For example, with (xS , yS) = (−0.68, 1.20), the critical value F0 is
roughly 0.70. Then we switched to the code with stagnation points at the plate edges,
fixed (xS , yS) = (−0.68, 1.20) and found F as part of the solution. Not surprisingly,
the result was F =F0. The free-surface profiles are shown in figure 9. We compared
the free surfaces obtained with both codes (with and without stagnation at point S)
and obtained excellent agreement, even near the singular point S. Even though the
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Figure 8. Free-surface profiles with stagnation point at (xS , yS) = (−0.99, 1.64). The Froude
number F = 1.04 comes as part of the solution. The plate is so small (total length of 0.02) that
it cannot be seen in the figure. Points A (centre of the plate) and S (edge of the plate) are both
stagnation points but they have different singular behaviour.
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Figure 9. Free-surface profiles for (xS , yS) = (−0.68, 1.20) and F = 0.70 and the blow-up of
the upper right free surface near the stagnation point S.

expansions are different, the effect of the stagnation point is so local that it barely
influences the whole flow. The flow shown in figure 9 looks similar to the weir flows
computed by Vanden-Broeck & Keller (1987) and Dias, Keller & Vanden-Broeck
(1988).

In figures 7–9, the stagnation points S and S ′ are precisely at the ends of the plate.
The angles are of 120◦ and the plate can be arbitrarily extended to the left and to the
right (with the plate dry) without changing the flow.

7. Flows emerging from an inclined nozzle in the absence of horizontal plate
As already mentioned in § 6, removing the horizontal plate – or equivalently letting

its distance from the edges of the vertical nozzle go to infinity – reduces the problem
to the vertical nozzle case studied by Dias & Christodoulides (1991). Here, however,
we wish to study the case where there is no symmetry in the flow. Moreover, the
nozzle can be inclined at an angle β of elevation to the positive horizontal axis. This
is shown in figure 10(a), where the stream coming from far inside the nozzle (see
point C) reaches a maximum (stagnation point S) and splits into two jets: one falling
on the left of S forming a single free surface along the upper side of the nozzle (see
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Figure 10. (a) Sketch of the flow. The free-surface profile is a computed solution for β = 60◦

and F = 1.2. The coordinates of the stagnation point S, (XS , YS) = (−0.80, 2.15), come as
part of the solution. (b) The complex potential f-plane with the images of the special points.
(c) The complex t-plane with the images of the special points.

S → I ), and one falling on the right of S forming two free surfaces pointing vertically
downward (see S → J and B → J ).

For the numerical study of the flow, two systems of orthonormal coordinates are
introduced: (X, Y), X being horizontal and Y being vertical, and (x, y), y being along
the direction of the nozzle. In this section, we take the full width of the nozzle and the
velocity of the fluid far inside the nozzle as unit length and unit velocity respectively.
Therefore, the mass flux is again unity. However, all figures have been rescaled by a
factor 2 for the sake of consistency with the rest of the paper.

The system is governed by Bernoulli’s equation which in dimensionless form yields

1

2
(u2 + v2) +

1

F 2
(y sinβ − x cosβ) = constant on free surface. (7.1)
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Now, the flow domain can be represented in the f-plane as in figure 10(b). We have
an infinite strip of height 1. Without loss of generality the stagnation point S is taken
as the origin of the complex potential.

We then transform the domain of the fluid in the f-plane into the upper half of the
unit disk in the t-plane so that points I, J and B are mapped into points −1, i and
1 respectively, as shown in figure 10(c). The upper (left) side of the nozzle goes onto
[tA, tC] and the lower (right) side onto [tC, 1], with the upper free surface going onto
the left quarter of the half-circle and the lower free surface onto the right quarter
of the half-circle. The point S is mapped into tS = eiγ . The transformation from the
f-plane to the t-plane can be written in differential form as

df

dt
=

1

π

(
(1 + tC)2

(
1 + t2

C

)
(
2tC cos γ − 1 − t2

C

)
)(

(1 − t)(2t cos γ − 1 − t2)

(1 + t)(1 + t2)(t − tC)(1 − t tC)

)
(7.2)

or in integrated form as

f =
2

π

(
1 + t2

C

)
(1 + cos γ )(

2tC cos γ − 1 − t2
C

) ln

(
1 + t

2 cos 1
2
γ

)
− 1

π

(1 + tC)2 cos γ(
2tC cos γ − 1 − t2

C

) ln

(
1 + t2

2 cos γ

)

+
1

π
ln

(
(t − tC)(t tC − 1)

2tC cos γ − 1 − t2
C

)
. (7.3)

The free surfaces in the t-plane are described by the points t = eiσ , σ ∈ [0, π]. Also
note that the proportion of the fluid volume flux going to the right is given by

α =
(1 + tC)2 cos γ

2tC cos γ − 1 − t2
C

.

The following singularities are present.
At the edge A of the nozzle, the velocity of the fluid is infinite and the appropriate

behaviour for ζ is

ζ ∼ (t − tA)−1 as t → tA. (7.4)

At the stagnation point S, the velocity vanishes and the appropriate behaviour for
ζ is

ζ ∼ t − eiγ as t → eiγ ,

or

ζ ∼ t2 + 1 − 2t cos γ as t → eiγ . (7.5)

Singularities at I and J are of jet-type and the appropriate behaviour for ζ is given
respectively by

ζ ∼ [ln(1 + t)]1/3 as t → −1 (7.6)

and

ζ ∼ [ln(1 + t2)]1/3 as t → i. (7.7)

It is then possible to define the function Ω(t) by the relation

ζ (t) = −i

(
1 + t2 − 2t cos γ

1 + t2
C − 2tC cos γ

)(
1 − t tA

t − tA

)(
tC − tA

1 − tCtA

)(
[− ln c(1 + t2)]1/3[
− ln c

(
1 + t2

C

)]1/3

)

×
(

[− ln c(1 + t)]1/3

[− ln c(1 + tC)]1/3

)(
eΩ(t)

eΩ(tC )

)
, (7.8)
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Figure 11. Asymmetric nozzle flow. Free-surface profiles for β = 90◦ and F = 0.70. The
coordinates of the stagnation point (xS , yS) = (−0.68, 1.06) come as part of the solution.

where |ζ (tC)| =1. We truncate the infinite series (see (2.10)) after N – 2 terms and we
introduce on the free surfaces the N – 1 mesh points

σM =
π

N − 1

(
M − 1

2

)
, M = 1, . . . , N − 1. (7.9)

Substituting the expressions of y and ζ into (7.1) at the mesh points σM , we obtain
N − 1 nonlinear algebraic equations for the N unknowns a1, . . . , aN−3, tA, tC and γ .
The Nth equation is obtained by imposing the constraint that the two edges A and B
of the nozzle have the same y, i.e.

yA = yB. (7.10)

This system of N nonlinear equations in N unknowns is solved by Newton’s method
for given values of F and β using MATLAB. All the computations presented here
were performed with N = 401. Dias & Vanden-Broeck (1990) studied similar flows,
the only difference being the absence of the lower free surface on the right-hand side.
They performed a detailed parametric study (influence of the Froude number and of
the inclination of the nozzle on the solutions), which we do not repeat here. Instead
we only provide a couple of examples in order to illustrate the extension of Dias &
Vanden-Broeck’s results to a jet flow on the right-hand side.

An example of a solution for an inclined nozzle is shown in figure 10(a). For
the vertical nozzle (i.e. β = 90◦) case, a Froude number value of F = 0.70 yields the
solution shown in figure 11. This solution can be compared with the symmetric case
of figure 9. Moreover, it can be viewed as the juxtaposition of the nozzle flow of
Dias & Christodoulides (1991) and the pouring flow of Vanden-Broeck & Keller
(1986).

For a given nozzle and a given Froude number, one sees that the solution is not
always unique. With the parameters of figure 11, one can have four different flows: a
pouring flow on both sides, a nozzle flow on both sides, the flow shown in figure 11
and its image in a vertical mirror. But once the configuration has been imposed
mathematically, the solution is unique. Which solution occurs in nature is a different
question, which cannot be addressed without studying the stability of the various
flows.
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8. Discussion
The results presented in this paper are based on several assumptions, which we

review here. First of all, the flow is assumed to be two-dimensional. A natural
extension of this work would be to consider axisymmetric flows. More precisely, one
could consider a nozzle with a circular cross-section and a disk for the plate. Then
the flow is assumed to be incompressible. If air is entrained by the jet emerging
from the nozzle, then compressible effects can play a role, especially when computing
the pressure along the plate. One could use for example the basic compressible two-
fluid model introduced by Dias, Dutykh & Ghidaglia (2008) and study the effect of
compressibility on the flows studied here.

As stated in the introduction, the inverse problem in which one specifies the angle
that the jets ought to make after hitting the plate can be investigated. For example,
if one is interested in jets with constant angles, one could raise or lower the plate as
the momentum of the incoming flow fluctuates inside the nozzle.

Another interesting problem is that of falling streams as opposed to rising streams.
Instead of having the nozzle pointing upward, one could have a nozzle pointing
downward (imagine for example figure 2 turned upside down). A question related to
the inclined nozzle is: can one of the lower free surfaces ever enclose a bubble against
the upper side of an inclined nozzle?

As pointed out by Raad, Chen & Johnson (1995), free-surface flows such as those
presented in this paper can be used to validate numerical codes for two-dimensional,
unsteady, incompressible, free-surface fluid flows. Indeed, these types of flows are
notoriously difficult to compute. In impact problems, variations in time play an
important role. Cooker & Peregrine (1995) studied the high pressures and sudden
velocity changes which may occur in the impact between a region of incompressible
liquid and a solid surface. Their theory rests upon the idea of pressure impulse, for
the sudden initiation of fluid motion in incompressible fluids. Results were obtained
for the peak pressure distribution and the velocity after impact.
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